
www.manaraa.com

AN ARCHITECTURE TO SUPPORT LEARNING, AWARENESS, AND TRANSPARENCY IN SOCIAL SOFTWARE ENGINEERING

An Architecture to Support Learning, Awareness,
and Transparency in Social Software Engineering

0doi:10.3991/ijet.v5s1.1194

Wolfgang Reinhardt and Sascha Rinne
University of Paderborn, Paderborn, Germany

Abstract—Classical tools for supporting software engineer-
ing teams (collaborative development environment, CDE)
are designed to support one team during the development of
a product. Often the required data sources or experts reside
outside of the internal project team and thus not provided
by these CDEs. This paper describes an approach for a
community-embedded CDE (CCDE), which is capable of
handling multiple projects of several organizations, provid-
ing inter-project knowledge sharing and developer aware-
ness. The presented approach uses the mashup pattern to
integrate multiple data sources in order to provide software
teams with an exactingly development environment.

Index Terms—Learning Systems, Knowledge Management,
Cooperative Development Environments, Learning Com-
munities

I. INTRODUCTION
Traditional cl ichés abo ut so ftware devel opers l oose

their validity more and m ore. Times, when programmers
sat in dark cellars and tried to so lve all p roblems on their
own are over once and for all. In the meantime software
engineering ha s becom e a very knowl edge-intensive [5]
and communicative process (not only but also triggered by
agile methods for software development) where the actors
heavily exchange data (see Google-Code1), connect with
like-minded (see Go ogle S ummer of C ode2), bl og about
experiences i n t heir own weblogs, provide code s nippets
free of charge (see Django-Snippets3) or help novices with
words and deeds in large mailing lists. This social soft-
ware engineering – t he creat ion o f soft ware and rel ated
artefacts within a social network – gained a lot of attention
in recent software engineering research [1,17]. Besides the
improvements of i ntegrated devel opment envi ronments
(IDE, e. g. Eclipse 4) or procedure m odels (e.g. eXt reme
Programming [3]) research is addressing improvements of
the daily working and learning environments of the devel-
opers. T he main funct ion of col laborative devel opment
environments (CDE) [2] is to support the whole develop-
ment process of a t eam of soft ware developers from start
to finish. This includes version control of code artefacts as
well as process docum entation, c oordination of t asks o r
support for division of labour.

CDEs usual ly are set up for one speci fic project; t he
possibilities for in ter-project-collaboration within an or-
ganization with multiple software projects are very limited
because the single CDEs are not able to exchange data.

1 http://code.google.com/
2 http://code.google.com/soc/
3 http://www.djangosnippets.org/
4 http://www.eclipse.org/

Furthermore many developers are using data pools (bulle-
tin boards, developer communities, mailing lists and a lo t
more) outside the organization in order to solve a specific
problem. Furthermore existing CDEs lack in pr oviding a
transparent view on the progress of a project, awareness of
developers’ c ompetencies an d su pport for individual i n-
formal learning processes.

This paper de scribes an approac h for a community-
embedded CDE (CCDE), w hich i s capabl e of han dling
multiple projects of several organizations, providing inter-
project knowledge sharing and developer awareness. The
presented a pproach uses t he mashup pat tern t o i ntegrate
multiple data sources i n order to provide so ftware t eams
with an exact ingly devel opment envi ronment. Furt her-
more we present requirements for a com munity of devel -
opers and sketch a first prototypical architecture for such a
CCDE.

II. RELATED WORK
The g oal o f this sec tion is to b ehold th e main asp ects

enlisted in the conception and implementation of a CCDE
in order to derivate functional and technical requirements.
Furthermore t his sect ion serv es for de finition an d disso-
ciation of the used terms.

A. Knowledge Management and Learning in Software
Engineering

The different facets of the concept of knowledge have
been discussed for over 2000 years now. Based on a fuzzy
understanding of kn owledge several t heories for kn owl-
edge management came up and rai sed the idea of sim ply
exchanging k nowledge bet ween i ndividuals or or ganiza-
tions (among others [8]). It is probably the most important
assessment to be m ade in th is co ntext th at „ you cannot
store knowledge“ [7] as in in terpersonal communication
only data is exchanged. Information emerges by interpret-
ing th is d ata with o wn prior kn owledge i n th e personal
context. In formation t hen i s t he fou ndation fo r pers onal
actions and decisions. So knowledge i s fi rst of al l a ra-
tional capaci ty and not a t ransferable item. POLYANI
distinguishes bet ween t acit and expl icit kno wledge,
whereas ex plicit knowl edge i s st ored i n t extbooks, so ft-
ware products and documents, while tacit knowledge is in
the mind o f peo ple as memory, sk ills, ex perience an d
creativity [10]. When t acit knowledge is externalised and
transformed into explicit knowledge (properly speaking it
is dat a now) , we cal l t his im plicit knowl edge. Im plicit
knowledge is of very high value for organisations such as
software pr ojects, as it gi ves hi nts how t o sol ve speci fic
problems in the future.

iJET – Volume 5, Special Issue 1: "ICL2009 – MashUps for Learning", January 2010 19

http://dx.doi.org/ijet.v5s1.1194�

www.manaraa.com

AN ARCHITECTURE TO SUPPORT LEARNING, AWARENESS, AND TRANSPARENCY IN SOCIAL SOFTWARE ENGINEERING

Regardless of the am biguous definitions of knowledge
and t he cl aims for necessi ty and im portance for kn owl-
edge m anagement, soft ware engi neering i s a dy namic
process, which is reliant on latest knowledge in the subject
domain. Thi s knowledge i s dy namic and evolves wi th
technology, organisational cul ture and c hanging needs of
the organisation [9]. Knowledge management in software
engineering can be im proved by recognising the need for
informal communication and exchange of data in order to
support the exchange o f implicit knowledge amongst de-
velopers. Learning and working environments thus should
support aware ness of developers, s haring of i mplicit
knowledge and foster informal, ad hoc exc hange of short
messages [6,11] as well as fa cilitating inter-project social
networks in form of communities of interest.

Informal learning is characterized as a process that does
not follow a s pecified curricu lum but rat her hap pens by
accident, spora dically and na turally during daily interac-
tions and shared relationships. Experience shows that the
majority of real learning is informal [4]. Informal learning
is what hap pens w hen t acit kn owledge o f a pers on i s
communicated t o anot her pe rson, which i nternalizes and
interprets the data and thus expands his own knowledge.
Examples o f such in formal learn ing situ ations with in
software e ngineering projects are sp ontaneous m eetings,
short m essages, pho ne cal ls but al so asy nchronous com -
munication lik e en tries in b ulletin b oards, co mments in
source code or comments in blogs. As hardly any formal
training for developers takes place, in software engineer-
ing in formal l earning is th e on ly way to stay u p to d ate.
Previous approaches for supporting ad hoc com munica-
tion focus on intra-project i mprovements and d o n ot i n-
clude expe rts from out side t he p roject. C onnecting with
others an d using art efacts fr om out side t he ow n p roject
seem to be a crucial factor in supporting learning within a
project.

B. Social Software Engineering
The term social software engineering denotes both the

engineering pr ocess of so ca lled soci al software and t he
software engineering within social relationship in collabo-
rative tea ms. Fo r th is paper th e latter d enotation is th e
focus of interest.

Studies sho w, that t he main part of m odern so ftware
engineering is carried out in teams, requiring strong inter-
actions between the people involved in a project [1,13,14].
Social ac tivity th us rep resents a su bstantial p art o f th e
daily work of a devel oper. Social net work st ructures i n
social net work si tes (SNSs) em erge by ad ding ex plicit
friendship connections between users. B y contrast, social
networks in the so ftware en gineering m ainly resu lt fro m
object-centred soci ality [15]. Devel opers do not j ust
communicate with each ot her – they connect through
shared artefacts. These social connections norm ally exist
only within a project even th ough m any of the artefacts
used come from outside of t he project. The consulted do-
main specific experts often do no t reside with in the own
organisation, but in other communities.

C. Collaborative Development Environments
BOOCH and BROWN [2] define a CDE as “ a virtual

space wherein all stakeholders of a project – even if dis-
tributed by time or distance – may negotiate, brainstorm,
discuss, share knowledge, and generally labor together to
carry out some task, most often to create an executable

deliverable and its supporting artifacts”. S o CDEs are a
virtual working environment whose key functions can be
clustered in the fo llowing categ ories: a) coo rdination of
developers work, b) co operation of de velopers, an d c)
formation of a community. CDEs shall create a working
environment that tries to keep frictional losses at a mini-
mum. Frictions are costs for setup and launch of the work-
ing en vironment, i nefficient cooperation while artefact
creation and dead time caused by mutual dependencies of
tasks.

BOOCH and BROWN define five several stages of ma-
turity of CDEs [2]; besides simple artefact s torage (stage
1) and basic mechanis ms for collaboration (stag e 2), ad-
vanced art efact management (stage 3), adva nced m echa-
nisms for collaboration (stage 4) the main feature of CDEs
on stage 5 i s to “encourage a vibrant community of prac-
tice” [2].

As the current median is somewhere around stage 1 and
2 [2], it is the goal of our efforts to enhance existing CDEs
for single projects with a co mmunity co mponent that al-
lows pr oject-spanning col laboration. T his community-
embedded CDE (CCDE) shall provide the classical func-
tions of a CDE stated above but also allow the seamlessly
exchange o f a rtefacts [12] , data and expe rtise am ongst
projects and d evelopers f rom multiple project s. The re-
mainder of this paper describes specific requirements for a
CCDE and presents an initial architectural design.

III. SOLUTION DESIGN
The following section introduces the requirements for a

CCDE to support aware ness a nd tran sparency in multi-
project envi ronments. W e defi ne fu nctional and no n-
functional requirements for t he CCDE and i ntroduce pos-
sible data sources needed in social software engineering
projects (SSEP). Finally this section provides a first archi-
tectural design of the CCDE eCopSoft.

A. Organisational Requirements on a CCDE
As stated in se ction 2.B, social software engineering is

a collaborative development process performed by a team
of people that often are separated by time a nd space [18].
A CCDE aims at closing the gap between the members of
a t eam by pro viding project awareness and transparency
as well as provi ding options to connect with other devel-
opers and teams. From an organi sational point of view a
CCDE splits into two parts: I) th e developers community
and II) t he si ngle pr ojects h osted at the CCDE. The re-
quirements for the first part of a CCDE requires methods,
services and tools for networking, presentation of contents
and exchange of opinions to foster data exchange and the
emergence of a community feeling. Thus, a CCDE should
be equipped with the typical community features of SNSs
like groups, wikis, bulletin boards, user profiles and friend
lists. On top of th is basic services and tools the commu-
nity component of a C CDE should offer domain specific
areas like a job market for de velopers, an event review
and a ne ws co rner f or t rending development t opics. Al l
services and t ools of t he developer community are to en-
sure the shared identity of developers, the sharing of news
and opinions as well as the start of new projects.

The second important parts of a CCDE are the project
spaces. A project space is basically the home of a hosted
project on t he CCDE. A proj ect space has to sup port the
members of t he pro ject in co llaborative and coor dinative

20 http:www.i-jet.org

www.manaraa.com

AN ARCHITECTURE TO SUPPORT LEARNING, AWARENESS, AND TRANSPARENCY IN SOCIAL SOFTWARE ENGINEERING

tasks. With our CCDE we claim to foster transparency and
awareness of collaborative pr ojects, for what reason a
project space m ust provide fundamental tools such as
wikis, e-mails, repository, bug tracker, and roadmap plan-
ning. Further data sources f or the deployment in software
projects are di scussed i n sect ion 3.B . A ny user o f t he
CCDE must be able to start a new project and easily select
the required services and tools for his project. The instan-
tiation of the s ingle tools has to take place automatically
and wi thout human intervention. Adding new developers
to a pr oject must be p ossible in v arious ways: ei ther th e
members of the project are sel ected a priori by the creator
of the project or added to the project afterwards. For the
latter one i t i s im portant t o di scern bet ween p ublic and
private projects. It must be possible to allow anyone to
contribute to a project (public) or to approve new devel-
opers for the project. The creator must be abl e to broad-
cast his search for new developers to the community (e.g.
by sending a microblogging message or adding an entry in
a bulletin board) and al so to browse the existing develop-
ers in order to directly ask them to join the project.

B. Data sources in software engineering projects
The pot ential data sources rel evant for sof tware engi -

neering project are manifold. This section tries to identify
the m ost important resou rces to sup port co llaborative
software engineering in the project spaces of the CCDE.

The selection of dat a sources that are applicable in a
CCDE is essentially dependent on the availa ble interfaces
of the respective backend syste ms. It is cru cial th at th e
applicable data sources provide interfaces (e.g. open APIs)
that allow the installation, configuration and query of data
without sweeping adaptations of the data sources. To inte-
grate a ne w data source in t he project spa ces the im ple-
mentation and upl oad t o t he server of a n ew co nnector
module is sufficient.

Basically we n eed to d istinct b etween d ata sources o r
systems that incorporate coordination activities and t hose
that incorporate communication activities of t he develop-
ment team. The l atter i s to be di stinguished bet ween i n-
formal and formal co mmunication [1 8]. I nformal co m-
munication i s consi dered as explicit co mmunication vi a
diverse communication channels such as telephone, video,
audio conference, voice mail, e-mail or ot her verbal con-
versations. Formal conversation refers to explicit commu-
nication such as written specification documents, reports,
protocols, status meetings or source code [6]. Thus essen-
tial sy stems and t ools t o support communication i n soft -
ware en gineering projects i nclude e-m ail, wiki, versi on
control systems, blogs, instant messaging or microblogs as
well as shared bookm arks a nd s hared RSS feeds. Also
modern communication channels l ike VoIP or video chat
could be part of t he com municative t oolbox o f a pr oject
space. Coordi nation activities address syste m-level re-
quirements, objectives, plans and issues. Working with the
customer and end users carries them out . To su pport co-
ordinative activ ities th e fo llowing data sources an d sys-
tems ought to be integrated in a project space: roadm ap
planning, i ssue and b ug t racker, c ollaborative calendars,
and collaborative to-do lists.

For m any of the dat a source s mentioned wel l-known
software sy stems exist that offer open AP Is. Alon g with
MediaWiki5 and St atusNet6, several versi on control sy s-

5 http://www.mediawiki.org

tems and mail servers e xist that can be a possible data
source for the integration in a project space. For other data
sources (e.g. s hared bookmarks or VoIP) these software
systems ap plicable in a CCD E are stil l to b e fo und. Be-
sides the open APIs it is a lso a necessary feature of the
data sources that they store their data persistently, so that
another person or t ool can reuse the res pective artefact in
another context later.

C. Requirements on a sophisticated Integration Layer
The main duty of an integration layer is to process the

data of all connected backend systems in a way that a cen-
tral and co mprehensive access to all data is possible. By
integrating the different data sources into a common layer
it will becomes feasible to gain additional information that
could not be provi ded from a si ngle backend sy stem be-
forehand.

Therefore the integration layer has to be informed about
changes i n the differe nt ba ckend syste ms and start an
analysis of the changed arte facts consequen tly. C hanges
on an artefact in a backend s ystem have to trigger a uni-
form change event that can be processed and stored by the
integration layer. A change event will typically deploy the
analysis of the specific artefa ct, which requires the auto-
matic processing of various artefact types like e-mail, wiki
articles, source code and m any more. Further on different
analyses techniques have to be integrated pursuing differ-
ent targets. These techniques ought to range from simple
stuff like language detection and key word analyses to so-
phisticated se mantically analyses of text ual art efacts and
precise source code analyses. The analysis framework has
to be highly extensible allowing the later addition of new
techniques. Al l dat a gained t hroughout t he analysis have
to be stored in a central data structure. An efficient design
of the data st ructure aims at fast and preci se querying of
the data and easy integration.

The integration layer is obliged to enhance a manually
entered d eveloper profile with au tomatically g enerated
data in o rder to keep it u p-to-date. To be ab le to do th is
and to be able to retrace the chronological sequence in the
modifications of an artefact, each user interaction with one
of the backend systems has to be stored as a n entry in the
event lo g o f th e in tegration layer. Ad ditional d ata ex -
tracted from an event (e.g. path to a source code file, cate-
gories of a wiki entry etc.) must be stored in a global data
model where artefacts are being connected syste m- and
project sp anning. With th is connection it shall b ecome
possible to gain additional information about artefacts and
developers and to answer specific queries like:
 Who i s t he main devel oper of a packa ge, class or

method?
 Which artefacts from other systems are highly related

to the current one?
 Who is an expert in a specific development domain

or technique?
 Which developers from the community could be i n-

vited to work on a new project?
 What is the expertise of a developer?

D. Architectural design
The req uirements st ated above dem and fo r a sy stem

that allows the connection of various data sources and that

6 http://status.net/

iJET – Volume 5, Special Issue 1: "ICL2009 – MashUps for Learning", January 2010 21

www.manaraa.com

AN ARCHITECTURE TO SUPPORT LEARNING, AWARENESS, AND TRANSPARENCY IN SOCIAL SOFTWARE ENGINEERING

provides multiple interfaces to access the integrated data
in vari ous way s. For t hat reason o ur pr ototypical im ple-
mentation eCopSoft (event-based coope rative software
engineering pl atform) consi sts of seve ral co mponents on
different l ayers (cf. fi g. 1) t hat make use of t he t ypical
mashup design pattern: easy and fast integration of m ulti-
ple data sourc es, done by accessing APIs t o produce re-
sults t hat were not t he original reason f or producing t he
raw source data [16].

There i s a cent ral server co mponent (eCopSoft core)
that is responsible for harvesting and processing data from
all connected data sources on the syste m layer. The sys-
tem layer mainly consists of the dat a sources described in
section 3.C. From a technical point of view these systems
run au tonomous on a serv er and are connected to the
eCopSoft server via their res pective APIs. The eCopSoft
core processes the data fro m all data sources, extracts
event data and ot her metadata and st ores i t in an i nternal
database. Those involved in a project can access the data
stored in the backend sy stems and t he additionally gener-
ated and ag gregated metadata with various clients on t he
presentation layer. These tool s connect to s erver via the
eCopSoft API.

The eCopSoft application is a modular and flexible sys-
tem that holds administrative and operating data, assures
the connection to the backend systems and provides inter-
faces for accessing the operat ing data with various clients.
Furthermore eCopSoft provides a central management for
users an d projects. Th e in tegration layer is the most im-
portant co mponent in th e eCopSoft architecture – all
events of the backend syst ems are proces sed here. Nor-
mally an event represents a user in teraction with on e of
the backend sy stems. The co nnector modules of t he data
sources act as event provider, whereas the e vent consum-
ers in th e in tegration layer process these events. Each
event h olds in formation ab out th e u ser th at in itiated th e
event, t he changed art efact, whi ch ki nd o f operat ion t he
user was carrying out (e.g. create, update, link…) as well
as other event-specific informa tion if required. On arrival
of an event at the event cons umers, the event and all con-

taining in formation are sto red in the event database. The
event data is p rocessed by the eCopSoft core and used t o
update the user profiles in the user profile database. Based
on these comprehensive additional data about the usage of
and work with artefacts in a development team the coop-
erative work can be e xplored in new ways. A visual pro-
ject dashboar d, art efact net works, art efact usage pat terns
or expert lists showing individual expertise are enhancing
the i ndividual and orga nizational l earning process wi th
artefact and user awareness and transparency.

To connect the several data sources with eCopSoft a
connector m odule will be implemented for each data
source. A co nnector module assures t he creat ion of t he
project-related i nstances and forwa rds t he operating dat a
from th e b ackend syste m to th e in tegration layer. Th e
connector m odules encapsulate the specific interfaces of
the backend systems represent them homogenous at server
side. The c reation of eve nts can either be actively tr ig-
gered by a bac kend system (e.g. by a SVN hook) or pas-
sively by peri odically query ing t he dat a so urce f or new
data (e.g. polling a RSS feed). The automatically instantia-
tion of t he backend sy stems is handl ed via scripts as par t
of the eCopSoft ap plication. W e will scrip t th e in stantia-
tion of the bac kend systems because most systems do not
provide an API for doing that out of the box. Furthermore
a scripted instantiation allows various adaptations to meet
the specific requirements of the eCopSoft architecture.

The clients on the presentation layer can connect to
eCopSoft vi a a web servi ces API. M ediated t hrough t he
API queries fo r projects, developers, or artefacts are real-
isable. These queries can be qualified with additional cri-
teria o r weig hted. Th erewith it is p ossible to q uery th e
system for experts to a specific artefact or all artefacts that
a specific developer contributed to. In the first instance we
plan three main clients:

1. A web-based project home (cf. fig. 2, 3),
2. An Eclipse expert view plug-in and
3. An admin interface to administer the whole system.

Figure 1. Schematical architecture of eCopSoft

22 http:www.i-jet.org

www.manaraa.com

AN ARCHITECTURE TO SUPPORT LEARNING, AWARENESS, AND TRANSPARENCY IN SOCIAL SOFTWARE ENGINEERING

Figure 2. Screenshot of the eCopSoft web frontend showing a Trac

environment for a project

Figure 3. Screenshot of the eCopSoft web frontend showing the inte-

grated webmail client for the project e-mail address

Large parts of the eCopSoft syste m base o n the Java
platform7, wh ich en sures reliability, p ortability an d scal-
ability. Fu rthermore, wh en it co mes to p roblem so lving,
there are numerous existing Ja va l ibraries t hat pr ovide
finished, tested and proven s olutions to specific problems.
This reuse of existing frame works accelerates the whole
development p rocess a lo t. To ensure fu ture ex tensibility
and t he i ntegration of furt her connect or m odules, eC op-
Soft will be developed on an OSGi platform8.

IV. CONCLUSION AND OUTLOOK
This pape r i ntroduced t he c oncept of a c ommunity-

embedded c ollaborative devel opment envi ronment
(CCDE) wh ose main funct ions are to co mbine classica l
approaches from collaborative development environments
with th e stren gths o f co mmunities o f in terest. W e pro-
vided requirements on functions of a community of devel-
opers as wel l as funct ional r equirements for a t echnical
integration l ayer t o enhance awareness and transparency
in social software engineering. With the help of a sophisti-
cated in tegration layer th e tr ansparency of the de velop-
ment process can be increased as c ommon events connect
the h itherto separated backend systems. Thereby connec-

7 http://java.sun.com/
8 http://www.osgi.org/About/Technology

tions between artefacts (e.g. wiki articles and Java classes)
manifests that have been hidden before. On the other hand
an in tegration layer in creases the pers onal awareness by
connecting artefacts of a project directly with its contribu-
tors and t hus allowing di rect co mmunication. With t he
help of th e auto matically ex tended d eveloper p rofile th e
expertise and wor king fi elds of a de veloper bec ome
clearer. The artefact awaren ess will b e increased by p ro-
viding related artefacts, ad ditional metadata (se mantic
information, classifica tions, used patterns…) and a lucid
overview of re cent changes of artefacts. Further more the
integration layer will allow anonym ously connecting to
developers fr om ot her pr oject i n orde r t o get hel p from
them.

Although n ot bei ng a cl assical mashup, t he present ed
CCDE approach connects data from various sources in a
way t hat devel opers an d use rs of t he c ommunity coul d
gain an advantage. In our opinion this advantage turns out
to be i n the assistance of i ndividual work and the steady
learning proce ss by a m ore transparent process and e n-
hanced awareness on various levels. Furthermore the pos-
sibility for a project spanning exchange of domain knowl-
edge and artefacts enhances the dat a exchange and t he
collaboration within an o rganisation and t hus f osters
learning an d i nterrelation. Th e easier data exchange, the
higher awareness of the development process and contex-
tualised data and experts creates an increas ed satisfaction
with t he whol e devel opment process and t hus m otivates
developers.

The present ed prot otype eCopSoft i s current ly under
development a t th e Un iversity o f Pad erborn an d will b e
evaluated i n s oftware development courses. Furt hermore
we plan to run the CCDE as a campus-wide platform for
software engineering projects, allowing the exchange of
experience and data among multiple project s. The eCop-
Soft platform f urthermore sha ll reduce t he administrative
overhead of providing C DEs t o num erous soft ware pr o-
jects by pr oviding a o ne-click-deployment fo r new pro-
jects. The first evaluation results of eCopSoft will be par t
of another publication.

REFERENCES
[1] N. Ah madi, M . Jazaye ri, F . Lell i, and S. Nescic, “ A survey of

social sof tware e ngineering,” in 23rd IEEE/ACM International
Conference on Automated Software Engineering - Workshops, pp.
1–12, 2008.

[2] G. Booch, and A. W . Br own, “Collabor ative develop ment envi-
ronments,” in Advances in Computers, vol. 59, pp. 2–29, 2003.

[3] K. Beck, Extreme Programming Explained. Embrace Change.
Addison-Wesley, 1999.

[4] J. Cross, Informal Learning – Rediscovering the Pathways that
inspire innovation and performance. Pfeiffer, 2006.

[5] P. N. Robillard, “ The role of knowledge management in software
development,” in Communications of the ACM, vol. 42, no. 1, pp.
87-94, 1999.

[6] W. Reinhar dt, “Co mmunication is the key – Suppor t Dur able
Knowledge Sharing in Softwar e Engineering by Microblogging,”
in Proceedings of Conference on Software Engineering 2009,
Workshop Software Engineering within Social software Environ-
ments, 2009

[7] I. Nonaka et al., “ Emergence of “Ba”,” in Knowledge Emergence,
2001.

[8] P. Schütt, „Kleine feine Unter schiede: Daten, I nformation und
Wissen,“ in Wissensmanagement 02/2009, pp. 10-12, 2009.

[9] A. Aur um, F. Daneshgar , J. Ward, “I nvestigating Knowledge
Management pr actices in so ftware develop ment or ganisations –

iJET – Volume 5, Special Issue 1: "ICL2009 – MashUps for Learning", January 2010 23

www.manaraa.com

AN ARCHITECTURE TO SUPPORT LEARNING, AWARENESS, AND TRANSPARENCY IN SOCIAL SOFTWARE ENGINEERING

An Australian experience,” in Information and Software Technol-
ogy, vol. 50, pp. 511-533, 2008.

[10] M. Polyani, The Tacit Dimension. Routledge & Kegan Paul, Lon-
don, 1966.

[11] P. N. Robillard, a nd M. P. Robillard, Types of collaborative work
in software engineering. J. Syst. Softw. , vol. 53, no. 3 , pp. 219–
224, 2000. (doi:10.1016/S0164-1212(00)00013-3)

[12] A. Sar ma, “A sur vey of collab orative tools in s oftware develop-
ment,” Te chnical Report at Unive rsity of Irvine, Institute for
Software Research, 2005.

[13] T. De Marco, and T. Liste r, Peopleware: productive projects and
teams. Dorset House Publishing, New York, 1987.

[14] C. Jones, Programming productivity. Mc Graw-Hill, New York,
1986.

[15] K. Knorr-C etina, “ Sociality with Objects: Social Relations in
Postsocial Knowledge Societies,” in Theory, Culture & Society,
vol. 14, no. 4, pp. 1-30, 1997 (doi:10.1177/026327697014004001)

[16] Wikipedia. M ashup (web application hy brid). (Revision as o f
10:23, 27.05.2009). Available at
http://en.wikipedia.org/w/index.php?title=Mashup_(web_applicati
on_hybrid)&oldid=292635186

[17] J. Münch, and P. Liggesmyer (Eds.), Proceedings of the Software
Engineering 2009 conference, Workshops. Social Aspects in Soft-
ware Engineering, 2009.

[18] J. Her bsleb, and A. M ockus, “An empirical study of speed and
communication in globally distr ibuted software development,” in
IEEE Transactions on Software Engineering, vol. 2 9, no. 6, pp.
481–494, June 2003.

AUTHORS
Wolfgang Reinhardt is Ph.D. student at the Com puter

Science Educa tion group at t he University of Pa derborn,
Germany (e-mail: wolle@upb.de).

Sascha Rinne i s doing his graduate studies at the De-
partment of Computer Science at the University of Pader-
born (e-mail: rinnes@upb.de).

This work was supported in part by the MATURE project funded by the
EU under contract no. 216356 (http://mature-ip.eu).
This article was modified from a presentation at the International Confer-
ence of Interactive Computer Aided Learning ICL2009, September 2009
in Villa ch, Aust ria. Sub mitted 11 Se ptember 2009. Published as resub-
mitted by the authors on 17 January 2010.

24 http:www.i-jet.org

http://dx.doi.org/10.1016/S0164-1212%2800%2900013-3�
http://dx.doi.org/10.1177/026327697014004001�
http://en.wikipedia.org/w/index.php?title=Mashup_(web_application_hybrid)&oldid=292635186�
http://en.wikipedia.org/w/index.php?title=Mashup_(web_application_hybrid)&oldid=292635186�
http://mature-ip.eu/�

www.manaraa.com

Copyright of International Journal of Emerging Technologies in Learning is the property of International

Journal of Emerging Technologies in Learning and its content may not be copied or emailed to multiple sites or

posted to a listserv without the copyright holder's express written permission. However, users may print,

download, or email articles for individual use.

